

Presentation for the "Scientific Seminar on Organic Food "

1.11.2012, Mikkeli, Finland, Updated 14.11.2014

European Organic Farming Research; the need focus on *"Eco-functional Intensification"* Carlo Leifert Nafferton Ecological Farming Group (NEFG), Nafferton Farm, Newcastle University, UK

Contents

- 1. Priorities EU Organic Farming Research
- 2. Definition "Food Security"
- 3. Challenge 9 Billion people
- 4. Global trends in agriculture
 - Crop yields
 - Resource use (NP-fertilisers/water/pesticides)
 - Resource use efficiency
- 5. Factors limiting crop yields in the future
 - Availability and cost of NPK-fertilisers
- 6. Strategies to improve "Food Security"
- 7. Barriers for "Ecofunctional intensification"

EU Organic farming R&D

- FP5 Environmental impact (e.g. Blight-MOP)
- FP6 Food Quality (e.g. QualityLowInputFood) Standard development (Organic Revision)
- FP7 Breeding and management innovations to improve robustness/resource use efficiency
 - QualityLowInputBreeds
 - NUE-crops

EU Horizon 2020 Food Security IFOAM *Ecofunctional intensification*

Food security

"The ability to provide enough food of high quality for humans through sustainable methods of production, processing, storage, transport, distribution, trading and retailing"

Sustainability in this context means without

- > negative impacts on the environment,
- reliance on non-renewable resources,
- > an erosion of current ethical standards

while ensuring

- > fair economic returns to all food chain stakeholders
- Flexibility to meet the challenges of global change

Amount (kg) of cereal (corn-equivalents) necessary to produce 1 kg of livestock products

Jeremy Grantham* (2012) Welcome to Dystopia! Entering a longterm and politically dangerous food crisis. *GMO Quarterly letter July 2012*

* Co-founder and Chief Investment Strategist of Grantham Mayo Van Otterloo (GMO), a Boston-based asset management firm

"Anyone who believes exponential growth can go on forever in a finite world is either a madman or an economist"

Kenneth Boulding, economist

Total global cereal production

Total global use of nitrogen, phosphorus and area of irrigated land

Tillman et al. (2002) Nature 418, 671-677

Total global pesticide production and imports

Tillman et al. (2002) Nature 418, 671-677

Diminishing returns of fertiliser applications

Tillman et al. (2002) Nature 418, 671-677

Declining resource use efficiency

Agricultural intensification over the last 40 years is estimated to have resulted in:

- > a **2 fold increase** in global food production¹
- > a **5-7 fold increase** in mineral NPK use¹
- resulting in a 2-3 fold reduction in <u>nutrient</u> <u>use efficiency</u> of crop production
- 2-3 times as much NPK is needed to produce a kg of food than 40 years ago

¹ Hirel et al. (2007) *Journal of Experimental Botany* **58:** 2369-2387

Why has nutrient use efficiency (NUE) decreased?

- semi-dwarfing genes were introduced into wheat to reduce straw length and lodging risk
- semi-dwarfing genes also reduced root length/root system size and thereby nutrient uptake efficiency¹

¹ Hawkesford 2014. J Cereal Sci. May 2014; 59(3): 276–283

Rothamsted Research, BBSRC Institute, UKTarget:20 t ha⁻¹ wheat by 2050Method:GMO-technology + more inputs

Exhibit 1 Crop Yields (5-year moving average)

Wheat - France, Germany, United Kingdom; Rice - Japan

Source: UN Food and Agriculture Organization As of 12/31/10

What will limit crop yields in the future?

Availability and costs of: Nitrogen (N) = energy Phosphorus (P)

Potassium (K)?, other minerals and WATER

Energy use – CO₂ emissions

Mineral N-Fertiliser

- 1 kg Nitrogen-fertiliser = 36,000kJ = 1 L fuel
- 1 kg nitrogen fertiliser (NH₃NO₃) results in
 = 2.38 kg CO₂ (equivalents of CO₂, CH₄ and N₂O)
- UK Farm level = 100 ha cereals x 200 kg N/ha/annum
 = 20,000 Litre fuel used
 = 47,600 kg CO₂ into the atmosphere
- European level = 11 Million t N/annum*
 = 11,000 Million Litre fuel used

* Fertiliser Europe (2009) Annual Forecast 2009. www.fertilizereurope.com

(Gellings and Parmenter 2004)

Energy requirement in agricultural system (world average) in KJ/kg

	Nitrogen	Phosphate	Potash
Production	69,530	7,700	6,400
Packaging	2,600	2,600	1,800
Transportation	4,500	5,700	4,600
Application	1,600	1,500	1,000
Total	78,230	17,500	13,800

Proven global reserve: 1,333Gb: 45.7 years-consumption of 2009 (BP, 2010)

Nitrogen, population growth and emissions

Nafferton Ecological Farming Group

World population and agricultural surface vs Fertilizer Nitrogen and NO_x emission (UNESCO-SCOPE, 2007)

Why will Phosphorus become a **bottleneck** for productivity?

Phosphorus (P) fertiliser is a mined mineral

- Numerous scientific studies conclude that phosphorus (phosphate rock) reserves-resources will be depleted in the 21st century
 - Pessimistic: in 30-40 years
 - More optimistic: in 70-80 years
- IFDC (International Fertilizer Development Centre) prediction: 300-400 years
 - Based on current consumption
 - Does the fertiliser industry and its lobbying bodies just want business as usual (avoid rationing)?

Global Phosphorus use and reserves

Source: Cordell, D, Drangert, J-O & White, S (2009) The Story of Phosphorus: Global food security and food for thought. Global Environmental Change, 19 (2), p292-305

World Phosphate Rock Reserves by Country

Nafferton Ecological Farming Group

Data: Jasinski, S (2010) Phosphate Rock, Mineral Commodity Summaries, US Geological Survey.

Relative energy, fertiliser, mineral and agricultural commodity costs (2000-2008)

(Source: Piesse and Thirtle, 2009)

What is the effect of running out of mineral P-fertiliser (example: UK wheat production)

Nutrients limiting wheat yield in 1900 and 2000 and predicted 2100 yields without P-fertilisation

What are the solutions?

The main approaches available are:

- 1. More efficient recycling of NPK via
 - animal and green manures,
 - crop residues, food processing waste
 - communal and domestic organic waste
 - human toilet waste/sewage
- 2. Reduction of losses of fertiliser from soils
- **3. Breeding/selection** of more nutrient (especially N and P) efficient crop varieties
- 4. Diet change (less meat, dairy products and eggs in the human diet)

Closing the nitrogen (& other nutrient) cycles

Can conventional farming deliver food security?

- High yields in conventional systems rely on mineral NPK fertiliser inputs and are not sustainable
 - Mineral N-fertiliser manufacture is estimated to account for 10% of total greenhouse gas emissions from agriculture
 - Mineral **P-deposits** will be depleted in 30-100 (300?) years
- Without mineral P-inputs yields in conventional farming will decline by more than 50%
- In the future mineral fertilisers will need to be replaced by
 - organic fertilisers made from both agricultural and domestic/communal organic waste (= recycling of NPK)
 - the use of legume crops to increase N-inputs into soils
- Currently mineral NPK fertilisers are still too cheap
 - BUT mineral fertiliser prices have increased more than 8-fold in the last 10 years

Can organic farming deliver food security?

Nafferton Factorial Systems Comparison experiments

Experimental Design

Nafferton Factorial Systems Comparison Trial

54°59'27.03" N 1°53'53.26" W elev 105 m

Nafferton factorial production systems comparison trial – experimental design

- Rotation design (4)
 - Non-diverse (2): 2 years grass/clover 6 years cereals, 1 year potato/ vegetables
 - Diversified (2): 3 years grass/clover, 2 years cereals
 2 years potato/vegetables, 1 year faba beans)
- Crop protection (2)
 - Conventional (pesticides used to farm assured standards)
 - Organic (according to soil association standards)
- Fertilisation (2)
 - Conventional (pesticides used to farm assured standards)
 - Organic (composted manure inputs only)
- Replicate blocks (4)
- Replicate experiments (4)

Total area: 6 ha

Effect of fertilisation and crop protection on the wheat yield (average of 4 seasons)

Wheat yield Nafferton Farm - 2004

Yield (t ha⁻¹)

Organic Conventional

Wheat - Yield (2005) Effect of using varieties adapted to organic systems

Wheat - Yield (2005) Effect of using varieties adapted to organic systems (longer straw!, higher NUE?)

Light Blue colour: improved fertility management

Wheat 2005 - Protein content Effect of using varieties adapted to organic systems

Effect of fertilisation and crop protection on the potato yield (average of 4 seasons)

Effect of fertilisation and crop protection on the cabbage yield (average of 4 seasons)

Effect of fertilisation and crop protection on the onion yield (average of 4 seasons)

Can organic farming deliver food security?

- Crop yields in organic farming systems are lower
 - by up to 40% in arable crops such as cereals/potato
 - yields in many horticultural crops are only slightly lower
- There is great potential to increase yields in organic farming systems by optimising/increasing organic fertiliser inputs regimes
 - Evidence from long term trials in China suggest that when used at the same mineral input level, mineral and organic fertilisers (e.g. manure) will produce similar yields
- There is increasing amount of organic waste !!!!!
- So what are the barriers for "eco-functional intensification" of organic crop production

Barriers for "eco-functional intensification"

- Organic standards/legislation which
 - restrict "imports" of fertility (principle of on-farm sustainability)
 - prohibit the use of certain organic wastes (night soil, sewage, animal processing waste) as fertiliser
- Environmental legislations which
 - restricts organic fertiliser inputs to 170 kg N ha⁻¹ annum⁻¹ although the nitrate leaching and P-run-off risk differ greatly between organic fertilisers
 - requires farms to have waste management licences to import urban organic waste onto farms

Issue associated with the "eco-functional intensification" of organic crop production

Food safety

– Is there an increased risk from food pathogen, heavy metals, other pollutants when using organic waste based fertilisers?

Consumer perceptions

– will organic consumers accept the use of night soil/sewage based fertilisers?

Crop health and nutritional quality

- will pest, disease and weed pressure increase?
- will the nutritional value of crops decrease?

Environmental impact

- Will nitrate leaching and P-run off increase?
- Will greenhouse gas emissions from fertiliser increase?
- Will energy use increase further?

Energy consumption in conventional vs organic crops (per unit area)

Energy consumption in conventional vs organic crops (per unit product)

We need to extensify organic animal production!!!!! Amount of cereal (corn-equivalents) necessary to produce 1 kg of livestock products

